对于“俄罗斯首都”或“一周中有多少天”的问题,谷歌会在搜索行中给出答案
您如何在不访问站点且不打开浏览器窗口的情况下获得此响应?
当我从 IDE 运行应用程序时,它运行良好,但是当我运行 PyInstaller 构建的应用程序时,pyscreenshot.grab 的工作方式类似于 MainWindow.show()。我尝试了 3 种不同的后端(PyQt5;PIL;默认),但它们都不起作用。不明白的可以看视频
如果我关闭主窗口,则会出现错误:
Exception in thread Thread-1:
Traceback (most recent call last):
File "threading.py", line 926, in _bootstrap_inner
File "threading.py", line 870, in run
File "main1.py", line 96, in main
File "lib\site-packages\pyscreenshot\__init__.py", line 31, in grab
File "lib\site-packages\pyscreenshot\loader.py", line 145, in backend_grab
File "lib\site-packages\pyscreenshot\loader.py", line 136, in force
File "lib\site-packages\pyscreenshot\childproc.py", line 39, in childprocess_grab
FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\User\\AppData\\Local\\Temp\\pyscreenshotmrgm1pkk\\screenshot.png'
PS 我使用的是开发版的 PyInstaller,因为 我需要 TensorFlow 支持
缺少数据错误。大约 4-5 天前,同一代码上不存在此错误。模型创建代码:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(27, 48, 1)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation("relu"))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('sigmoid'))
model.compile(loss="categorical_crossentropy", optimizer="adam",
metrics=["accuracy"])
学习代码
datagen = ImageDataGenerator()
dirTrain = "/content/GeneratedI/train"
train_data = datagen.flow_from_directory(dirTrain, target_size=(27, 48), batch_size=100,
class_mode="categorical", color_mode="grayscale")
dirVal = "/content/GeneratedI/val"
validation_data = datagen.flow_from_directory(dirVal, target_size=(27, 48), batch_size=100,
class_mode="categorical", color_mode="grayscale")
print("Training the network...")
t_start = time.time()
history = model.fit_generator(train_data,
steps_per_epoch=60000 // 10,
epochs=1,
validation_data=validation_data,
validation_steps=10000 // 10)
print(time.time() - t_start)
肯定有图像,60k 用于训练,10k 用于验证。甚至输出也证实了这一点:
Found 60000 images belonging to 10 classes.
Found 10000 images belonging to 10 classes.
我使用谷歌协作
我正在尝试在我的数据集上训练神经网络。图片示例(所有图像都是位图)。
模型创建代码:
model = Sequential()
model.add(Dense(1296, activation='relu', input_shape=(27, 48)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=RMSprop(), metrics=['accuracy'])
学习和创建生成器的代码:
datagen = ImageDataGenerator()
dirTrain = "D:\\GeneratedI\\train"
train_data = datagen.flow_from_directory(dirTrain, target_size=(27, 48), batch_size=20,
class_mode="categorical", color_mode="grayscale")
dirVal = "D:\\GeneratedI\\val"
validation_data = datagen.flow_from_directory(dirVal, target_size=(27, 48), batch_size=20,
class_mode="categorical", color_mode="grayscale")
print("Training the network...")
t_start = time.time()
history = model.fit_generator(train_data,
steps_per_epoch=60000 / 20,
epochs=10,
validation_data=validation_data,
validation_steps=6000 / 20)
print(time.time() - t_start)
PS 由于我的处理器上没有 AVX,我使用 tensorflow 1.5 和 keras 2.1.6。