我最近开始使用vim,从VsCode切换,因为arch有文件写入问题......我已经设置了NERDTree,但我无法关闭终端窗口,我该怎么做?
autocmd BufEnter * if tabpagenr('$') == 1 && winnr('$') == 1 && exists('b:NERDTree') && b:NERDTree.isTabTree() | quit | endif
botright :terminal
我有一个数据集,它有一个赢家和输家列。如何使数据集中部分的数据相互之间发生变化?我试过了。
from random import randint
switcher = data.copy()
for i in range(len(data)):
if randint(0, 100) % 2 == 1:
data['name.win'][i], data['name.lose'][i], \
data['country.win'][i], data['country.lose'][i], \
data['rating.win'][i], data['rating.lose'][i], \
data['civ.win.name'][i], data['civ.lose.name'][i] \
= \
switcher['name.lose'][i], switcher['name.win'][i], \
switcher['country.lose'][i], switcher['country.win'][i], \
switcher['rating.lose'][i], switcher['rating.win'][i], \
switcher['civ.lose.name'][i], switcher['civ.win.name'][i]
else:
pass
我正在 Django 上开发一个可以发布帖子的网站。如何将帖子的作者添加到数据库中?
'''views.py'''
def create_post(request):
error = ''
if request.method == 'POST':
form = PostForm(request.POST)
if form.is_valid():
form.save()
return redirect('crypto')
else:
error = 'Invalid Form!!!'
form = PostForm()
context = {
'form': form,
'error': error,
}
return render(request, 'crypto/create-post.html', context)
#models.py
class Post(models.Model, ):
author = models.TextField()
title = models.CharField('Название поста', max_length=125)
text = models.TextField('Описание')
created_date = models.DateTimeField(default=timezone.now)
我有一个神经网络测试文件夹,我想将它分成三个网络样本,以检查神经网络在每个类上失败的频率。我如何将数据加载到训练模型中:
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(rescale=1./255, rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True, fill_mode='nearest', validation_split=0.1)
train_generator = datagen.flow_from_directory(train_path, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical', shuffle=True, subset='training')
validation_generator = datagen.flow_from_directory(train_path, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical', shuffle=True, subset='validation')
我如何测试模型:
path = '/content/drive/MyDrive/БД/распознавание 3 марок машин/данные/Автомобили/val/'
validation = datagen.flow_from_directory(train_path, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical', shuffle=True, subset='validation')
answers = model.evaluate(validation, batch_size=batch_size)
但是如何分别检查每个班级的模型?